

Abstracts

Amplification at 258 GHz Using a Saturated Gas Resonance

H.J. Liebe. "Amplification at 258 GHz Using a Saturated Gas Resonance." 1968 Transactions on Microwave Theory and Techniques 16.10 (Oct. 1968 [T-MTT]): 860-865.

A 258-GHz reflection amplifier was built which consisted of a cylindrical cavity (3 mm diam., 7 mm length) filled with hydrogen cyanide gas at pressures up to 0.1 torr. When the molecular resonance of the $J = 2 \rightarrow 3$ rotational transition of $H^{12}C^{15}N$ and the cavity resonance coincided, about 100 μ W of the monochromatic pump-power were sufficient to saturate the two-level quantum system. The pumped gas furnished a nonlinear (power-sensitive) impedance which was used to amplify weak AM-sidebands. The signal was reflected with a maximum gain of 20 dB and a bandwidth of 0.5 MHz. The variation of the amplification with gas pressure, pump power, frequency, Q-values, and cavity tuning was measured and analyzed. The low unloaded Q-value of the $TE(0, 1, 11)$ resonator, the limited pump power available at 258 GHz, and matching difficulties prevented attainment of the theoretical gain-bandwidth product of 37 MHz at room temperatures. A measurement performed at 200°K indicated a threefold increase of this gain-bandwidth product.

[Return to main document.](#)